The Future of Liquid Transportation Fuels from Biomass

Stoichiometry, Energy & Economics

Dr. Paul F. Bryan
Independent Consultant

Primary Drivers & Assumptions (IMHO)

- Survival of humanity depends on:
 - Sustainable use of soil, sunlight & water for all purposes
 - Substantial reduction of net-GHG emissions
 - Solving the "non-renewables" problem (*e.g.*, metal ores, phosphate fertilizer, carbon for non-fuel products)
- All "energy" sectors must contribute to GHG reductions:
 - Transportation sector uses about 1/3 of total energy
 - Liquid fuels from crude oil dominate transportation sector
- Biomass is a critical resource:
 - <u>Traditional</u>: Food, Feed, Fiber, Construction, etc.
 - New: Organic Fuels & Materials
 - "Type" is irrelevant ... in the end, it comes down to whatever "crop" makes best use of land & other inputs

Context, Clarification, Etc.

- High-Value, Non-Fuel Products from Biomass:
 - Some are already economically viable
 - Their niche will grow as ag/bio-technology allows
 - They will **not** meaningfully impact GHG emissions
- Displacing Liquid Fuels from the Transportation Sector:
 - Will likely be significant in some cases:
 - Commuting (LDPV & First/Last Mile for Mass Transit)
 - Fleet Vehicles (Buses, Deliveries, Local Services)
 - Will probably not be significant in other applications:
 - Primary "family vehicle" in suburban & rural locales
 - Long-haul Freight & Passengers (Bus, Train, Truck, Barge, Ship)
 - Air Travel! (Jets & Prop Planes)

Global Energy Consumption

Energy Consumption (2013)	Quads / year	% of Total
Petroleum	170	33
Coal	140	27
Natural Gas	100	20
Nuclear	20	4
Biomass Fuels (Liq. BF=3 Quads)	44	9
All Other Renewables (Hydro=7; Geo=3; Wind=2; Solar=1)	13	3

Stoichiometry – 1

• Chemistry of Biomass:

$C_1H_2O_1$	

Sugar, Starch

 $\mathbf{C}_{1}\mathbf{H}_{1.5}\mathbf{O}_{0.4}$

$$\mathbf{C_1H_2O_{0.1}}$$

Lignin

(Typical "Biomass")

$$65 - 75\%$$

$$25 - 35\%$$

• Chemistry of Fuels & Chemicals:

$$\mathbf{C}_1\mathbf{H}_2$$

Gasoline, Diesel & Jet Fuel (Paraffinic)

$$\bullet$$
 C_1H_1

Light Olefins

$$-C_1H_2$$

Paraffins & Heavy Olefins

$$\bullet$$
 C₁H_{1.0-1.3}

Aromatic Fuels & Chemicals (BTX)

$${
m C_1H_1O_{0.5-1.0}}$$

Organic Acids, Esters, Alcohols, etc.

Stoichiometry – 2

Biomass contains oxygen; fuels ideally do not

(1 ton)

- Some high-volume organic chemicals do contain oxygen, but these volumes are << fuels
- The only way to "get rid of" oxygen is as CO2 or H2O:

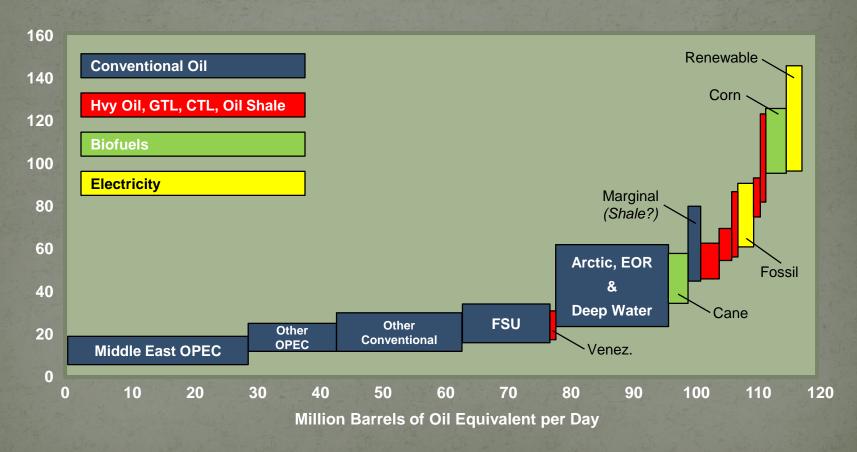
Paraffinic:
$$3CH_2O$$
 $\rightarrow 2CH_2 + CO_2 + H_2O$ (1 ton) (0.31 ton)

Aromatic: $5CH_2O$ $\rightarrow 4CH + CO_2 + 3H_2O$ (1 ton) (0.37 ton)

Ethanol: $6CH_2O$ $\rightarrow 2C_2H_6O + 2CO_2$

• Succinic Acid:
$$5CH_2O + 1.5O_2 \rightarrow C_4H_6O_4 + CO_2 + 2H_2O_{(1 \text{ ton})}$$
 (0.73 ton)

(0.51 ton)

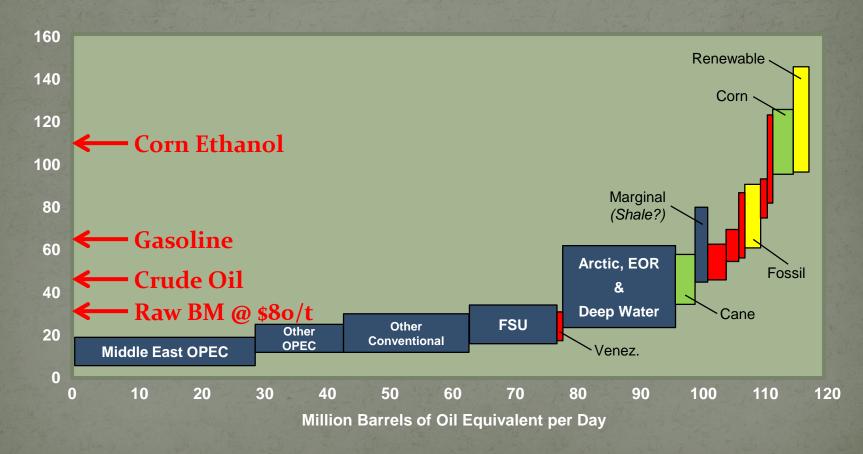

Stoichiometry & Energy

- The maximum possible weight % yield of a product depends a great deal on the oxygen content of the product (and to a lesser extent on the hydrogen content)
- The maximum energy content (Btu, cal, kJ, etc.) of a product **does not** depend on the hydrogen or oxygen content (as long as the only other outputs are CO₂ & H₂O)
- The most efficient possible conversion process always results in the energy content of the feedstock being **entirely captured** in the energy content of the products
- Therefore, energy content is a better yardstick for comparison of various processes & products.

Energy Source	Price (7/2016)	Conversion	\$/MMBtu
Coal (fob PRB)	\$8.70/ton	8,800 Btu/lb	\$ 0.50
Coal (U.S. avg., delivered)	\$41/ton	10,400 Btu/lb	\$ 2.00
Nat. Gas (Henry Hub)	\$2.80/MMBtu		\$ 2.80
Corn Stover (plant gate, est.)	\$8o/ton	7,500 Btu/lb	\$ 5.35
Wood Pellets (fob Rotterdam)	\$113/tonne	8,700 Btu/lb	\$ 5.90
Propane (USGC)	\$0.52/gal	89,200 Btu/gal	\$ 5.45
Crude Oil (WTI)	\$42/BBL	5.8 MMBtu/BBL	\$ 7.20
Diesel (U.S. Wholesale, ~Jet)	\$1.25/gal	137,630 Btu/gal	\$ 9.10
Gasoline (U.S. Wholesale)	\$1.33/gal	123,830 Btu/gal	\$ 10.80
Heating Oil (NY Harbor)	\$1.20/gal	115,000 Btu/gal	\$ 10.45
Corn Ethanol (CBOT)	\$1.41/gal	76,000 Btu/gal	\$ 18.55
p-Xylene (USGC)	\$840/tonne	18,650 Btu/lb	\$ 20.40
Butanol (n-/i-BuOH avg.)	\$895/tonne	15,500 Btu/lb	\$ 26.10
Electricity (U.S. avg.)	\$0.106/kW-hr	3412 Btu/W-hr	\$ 31.00
Cell. Ethanol (cobs, est.)	\$3.55/gal	76,000 Btu/gal	\$ 41.20
Succinic Acid	\$1785/tonne	5,745 Btu/lb	\$ 140.60

Total
Production
Cost
(\$US/BBL)

Transportation Fuel Supply Curve (2008 Prediction of 2020 Market)



(Source: "The Future of Alternative Transportation Fuels" – Booz & Co. Study (2008))

← Cellulosic Ethanol

Total
Production
Cost
(\$US/BBL)

Transportation Fuel Supply Curve (2008 Prediction of 2020 Market)

(Source: "The Future of Alternative Transportation Fuels" - Booz & Co. Study (2008))

Conclusions

- Liquid fuels will be needed in large volumes for the foreseeable future
- Biomass is the only promising source of renewable, sustainable liquid fuels
- Biofuels cannot compete with fossil fuels on an economic basis without a GHG-emissions penalty
- Non-food biomass is currently a much more costly source of fermentable sugars than sugars & starches
- Lignin makes up a substantial portion of the energy content of non-food biomass

Implications for Biomass Feedstocks

- GHG-emissions penalty is essential
- Lignin utilization will be important for fuels and other low-value products
- Crops & processes should focus on:
 - Maximizing energy capture and GHG reduction
 - Minimization / recycle of inputs (water, N, P, K)
 - Maintenance of soil health
- Likely future:
 - Fermentation, mainly of sugar / starch crops, for high-value products, with integrated CAFO + AD + nutrient recycle
 - Thermochemical conversion of whole biomass for fuels and other low-value products

Thank You!